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I. Star Models in Quasi-Static Equilibrium1 
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ABSTRACT 

The use of the coordinate stretching procedure of Poincark and Lighthill is investigated 
for its applicability to the question of interface location in two-point boundary-value 
problems. The case in which an interface separates zones of convective and radiative 
equilibrium in star models is used to exemplify the technique. We discuss briefly the 
necessary conditions for choosing the arbitrary PoincarbLighthill function, and we 
formulate the linearized problem by making a particular choice for the function. 

Most existing algorithms for the solution of nonlinear equations with two-point 
boundary conditions involve the solution of the linearized equations obtained by 
perturbing the four dependent variables and iterating until convergence is reached. 
The purpose of this note is to point out the role of the coordinate stretching 
technique of Poincar6 [I] and Lighthill [2] in helping to locate interfaces between 
the two boundaries. We exemplify the technique by considering the problem of 
a spherical star in quasi-static equilibrium, thereby confining the coordinate 
stretching to the independent space-variable. The question of the stretching of 
the time scale will be taken up at a later stage. 

Consider the system of nonlinear equations governing the structure of a star 
in radiative equilibrium: 

dyi/dx = fi(y, x) (i = 1, 2, 3,4), (1) 

where y = {yl, y2, ys, y”}. We identify y4 with the temperature and x with the mass 
fraction and we assume that the range of x has been normalized to unity. When the 
temperature gradient dy4/dx equals the adiabatic gradient; i.e., 

dy4 dy4 -=- 
( 1 dx dx ad’ 
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convection ensues, and the fourth component of Eq. (1) must be replaced by the 
corresponding adiabatic gradient 

dJ+/dx = fyy, x). (3) 

For simplicity we assume that the star is chemically homogeneous. The case for 
which a discontinuity in chemical composition occurs at the interface can be 
generalized from the present work without difficulty. 

The standard perturbation procedure is to expand y about a trial solution yO , 

Y = Yo + Yl, (4) 

and assume that yr < y. . The Poincare-Lighthill (or PL) expansion generalizes 
the procedure by expanding the independent variable as well: 

x = x0 + x1 , (5) 

where x1 is arbitrary but small and where now all functions y, , y1 , x1 are functions 
of x0 . Substituting expansions (4) and (5) into Eq. (1) and neglecting all quantities 
higher than first order, we obtain 

2 =d (~)o+xl(g)o +gyl + (f -$,,, (6) 

wheref, =.f(yo , x0). In Eq. (6) all terms with zero subscripts are evaluated from 
the trial solution and we retain the zeroth-order quantities 

which are the errors in the gradients of the trial solution; summation occurs over 
repeated indexes. Whenever the Schwarzschild criterion (2) is satisfied by the trial 
solution, i.e., when 

(7) 

convection is the dominant mode of energy transport and f 4 in Eq. (6) must be 
replaced by p according to Eq. (3). 

We may now use the freedom of choice given by the arbitrary PL function x1(x0) 
to assist in locating the interface. Clearly, x1(x0) must comply with the conditions 
pertaining at the interface. These are (in the present case) the stability criterion (2) 
which from Eqs. (1) and (3) we rewrite as 

sly, 4 = f “05 4 - jY,Y, 4. (8) 
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At the interface S = 0; similar criteria can be established for other physical 
conditions. Performing the PL expansion on S(y, x) and neglecting terms of order 
higher than 1 as before, we find: 

Sc.Y,X) = so + Yli (s). + x1($)*7 

where S,, = S(y, , x0) is the value of S obtained from the trial solution. At the trial 
interface, S,, = 0. The criterion for the determination of x1(x0) is that S shall be 
zero at the corrected interface as well. This defines x1(x,,) at the interface and hence, 
from Eq. (5), the corrected position of the interface. Thus, denoting by bars the 
quantities evaluated at the interface, we have from Eq. (9), 

We now choose the arbitrary function x1(x,,) to be such that the size of the range 
of x is unaltered after an iteration (since the mass of the star is specified). Thus 

x,(O) = 0, (11) 

x,(l) = 0. (12) 

In addition x1(x,,) must have the value R, at zO, according to Eq. (10). These 
conditions are not sufficient to determine x1(x0) completely, and we therefore can 
arbitrarily select other criteria. For example, we might choose for x1(x,,) the 
function that maximizes the rate of convergence to the true solution. For present 
purposes, however, it is sufficient to complete the formulation in a strictly linear 
fashion and choose x1(x0) to be linear. In view of Eqs. (lo)-(12), x1(x0) cannot 
therefore be continuous and smooth. Hence we let 

A simple visualization of this particular stretching procedure is achieved by 
regarding the range (0 < x < 1) as an elastic rod obeying Hooke’s law in com- 
pression and elongation. We regard x0 as a Lagrangian variable which moves with 
the material of the rod during elastic deformations. Once the point 4 is located 
from the Schwarzschild criterion, changes in the position of the trial interface will 
stretch the rod in one region while simultaneously compressing it in the other. 
Whether either region suffers a stretching or a compression depends upon the sign 
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of A$ . The procedure is repeated on successive iterations until convergence, at 
which the final value f = 2, + 2, gives the position of the interface. More 
involved choices can be made when there is more than one interface, and laws 
of elasticity more complicated than Hooke’s law can be used in the stretching of 
the x coordinate. 

By use of Eqs. (13) and (14), Eq. (6) becomes 

2 = yli ($$), + (+) [xo (-g), +h] + Eo (0 d xo G zo), (15) 

dy, 
dx, = Yl i (&), + (To2T) [ho - 1) g,, +fo] + Eo 

(30 < x0 < I>, (16) 

where f, must be obtained from Eq. (10). The solution of these equations may be 
organized according to existing techniques (see, e.g., [3]-[5]). Computational 
experimentation on this and related problems is underway. 
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